Therms of Gas BTU s 100,000 Tons (refrigeration) BTU/ Hr. 12,000 Watts BTU/ Hr. 3.413 Electrical Formulas To Find Single Phase Two Phase -Four Wire Three Phase Amps when HP is known HP x 746 V x%EFF x PF HP x 746 V x%EFF x PF x 2 HP x 746 V x%EFF x PF x 1.73 Amps when KW is known KW x 1000 V x PF. Therms of Gas BTU s 100,000 Tons (refrigeration) BTU/ Hr. 12,000 Watts BTU/ Hr. 3.413 Electrical Formulas To Find Single Phase Two Phase -Four Wire Three Phase Amps when HP is known HP x 746 V x%EFF x PF HP x 746 V x%EFF x PF x 2 HP x 746 V x%EFF x PF x 1.73 Amps when KW is known KW x 1000 V x PF. . Conversion factors are provided in detailed tables at the end of this document. Standard unit multipliers are used to convert billed units to kBtu. Standard heat content assumptions are used for fuels tracked by mass or volume. Error: We couldn't find a conversion between btu and amps incompatible types Were you trying to convert energy units or electric current units? Having trouble with a unit conversion? Try doing a search, or posting to the forum. You may also be looking for a date difference or molecular weight. Aug 14, 2013 A btu is a measure of energy, but 18,000 btu per hour is a power of 5.22 kW, which is 5220/220 amps, 24 amps.
Use this calculator to estimate the cooling needs of a typical room or house, such as finding out the power of a window air conditioner needed for an apartment room or the central air conditioner for an entire house.
This is a general purpose calculator that helps estimate the BTUs required to heat or cool an area. The desired temperature change is the necessary increase/decrease from outdoor temperature to reach the desired indoor temperature. As an example, an unheated Boston home during winter could reach temperatures as low as -5°F. To reach a temperature of 75°F, it requires a desired temperature increase of 80°F. This calculator can only gauge rough estimates.
The British Thermal Unit, or BTU, is an energy unit. It is approximately the energy needed to heat one pound of water by 1 degree Fahrenheit. 1 BTU = 1,055 joules, 252 calories, 0.293 watt-hours, or the energy released by burning one match. 1 watt is approximately 3.412 BTU per hour.
Asc timetables 2018 mac. BTU is often used as a point of reference for comparing different fuels. Even though they're physical commodities and quantified accordingly, such as by volume or barrels, they can be converted to BTUs depending on the energy or heat content inherent in each quantity. BTU as a unit of measurement is more useful than physical quantity because of fuel's intrinsic value as an energy source. This allows many different commodities with intrinsic energy properties to be compared and contrasted; for instance, one of the most popular is natural gas to oil.
BTU can also be used pragmatically as a point of reference for the amount of heat that an appliance generates; the higher the BTU rating of an appliance, the greater the heating capacity. As for air conditioning in homes, even though ACs are meant to cool homes, BTUs on the technical label refer to how much heat the air conditioner can remove from their respective surrounding air.
Obviously, a smaller area room or house with shorter lengths and widths requires fewer BTUs to cool/heat. However, volume is a more accurate measurement than area for determining BTU usage because ceiling height is factored into the equation; each three-dimensional cubic square foot of space will require a certain amount of BTU usage to cool/heat accordingly. The smaller the volume, the fewer BTUs are required to cool or heat.
The following is a rough estimation of the cooling capacity a cooling system would need to effectively cool a room/house based only on the square footage of the room/house provided by EnergyStar.gov.
Area To Be Cooled (square feet) | Capacity Needed (BTUs per hour) |
100 to 150 | 5,000 |
150 to 250 | 6,000 |
250 to 300 | 7,000 |
300 to 350 | 8,000 |
350 to 400 | 9,000 |
400 to 450 | 10,000 |
450 to 550 | 12,000 |
550 to 700 | 14,000 |
700 to 1,000 | 18,000 |
1,000 to 1,200 | 21,000 |
1,200 to 1,400 | 23,000 |
1,400 to 1,500 | 24,000 |
1,500 to 2,000 | 30,000 |
2,000 to 2,500 | 34,000 |
Thermal insulation is defined as the reduction of heat transfer between objects in thermal contact or in the range of radiative influence. The importance of insulation lies in its ability to lower BTU usage by managing as much as possible the inefficient wasting of it due to the entropic nature of heat – it tends to flow from warmer to cooler until there are no longer temperature differences.
Generally, newer homes have better insulating ability than older homes due to technological advances as well as a more strict building code. Owners of older homes with dated insulation that decide to upgrade will not only improve on the ability for the home to insulate (resulting in friendlier utility bills and warmer winters), but also have the value appreciation of their homes.
The R-value is the commonly used measure of thermal resistance, or ability of heat to transfer from hot to cold through materials and their assembly. 3ds simple cia converter v4 3 download. The higher the R-value of a certain material, the more it is resistant to heat transfer. In other words, when shopping for home insulation, higher R-value products are better at insulating, though they're usually more expensive.
When deciding on the proper input of insulation conditions into the calculator, use generalized assumptions. A beach bungalow built in the 1800s with no renovations should probably be classified as poor. A 3-year-old home inside a newly developed community most likely deserves a good rating. Windows normally have poorer thermal resistance than walls. Therefore, a room with lots of windows normally means poor insulation. When possible, try to install double-glazed windows to improve insulation.
To find the desired change in temperature to input into the calculator, find the difference between the unaltered outdoor temperature and the desired temperature. As a general rule of thumb, a temperature between 70 and 80°F is a comfortable temperature for most people.
For example, a house in Atlanta might want to determine the BTU usage during winter. Atlanta winters tend to hover around 45°F with chances to reach 30°F occasionally. The desired temperature of the dwellers is 75°F. Therefore, the desired temperature increase would be 75°F - 30°F = 45°F.
Homes in more extreme climates will obviously require more radical changes in temperature, resulting in more BTU usage. For instance, heating a home in Alaskan winter or cooling a home during a Houston summer will require more BTUs than heating or cooling a home in Honolulu, where temperatures tend to stay around 80°F year-round.
Obviously, size and space of house or room, ceiling height, and insulation conditions are very important when determining the amount of BTUs required to heat or cool a house, but there are other factors to keep in mind: